## Trigonometry in right-angled triangles

## A LEVEL LINKS

Scheme of work: 4a. Trigonometric ratios and graphs

## Key points

- In a right-angled triangle:
- the side opposite the right angle is called the hypotenuse
- the side opposite the angle $\theta$ is called the opposite
- the side next to the angle $\theta$ is called the adjacent.

adjacent
- In a right-angled triangle:
- the ratio of the opposite side to the hypotenuse is the sine of angle $\theta, \sin \theta=\frac{\mathrm{opp}}{\mathrm{hyp}}$
- the ratio of the adjacent side to the hypotenuse is the cosine of angle $\theta, \cos \theta=\frac{\text { adj }}{\text { hyp }}$
- the ratio of the opposite side to the adjacent side is the tangent of angle $\theta, \tan \theta=\frac{\mathrm{opp}}{\operatorname{adj}}$
- If the lengths of two sides of a right-angled triangle are given, you can find a missing angle using the inverse trigonometric functions: $\sin ^{-1}, \cos ^{-1}, \tan ^{-1}$.
- The sine, cosine and tangent of some angles may be written exactly.

|  | 0 | $30^{\circ}$ | $45^{\circ}$ | $60^{\circ}$ | $90^{\circ}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| sin | 0 | $\frac{1}{2}$ | $\frac{\sqrt{2}}{2}$ | $\frac{\sqrt{3}}{2}$ | 1 |
| $\cos$ | 1 | $\frac{\sqrt{3}}{2}$ | $\frac{\sqrt{2}}{2}$ | $\frac{1}{2}$ | 0 |
| $\boldsymbol{t a n}$ | 0 | $\frac{\sqrt{3}}{3}$ | 1 | $\sqrt{3}$ |  |

## Examples

Example 1 Calculate the length of side $x$.
Give your answer correct to 3 significant figures.


1 Always start by labelling the sides.

2 You are given the adjacent and the hypotenuse so use the cosine ratio.

3 Substitute the sides and angle into the cosine ratio.

4 Rearrange to make $x$ the subject.
5 Use your calculator to work out $6 \div \cos 25^{\circ}$.
6 Round your answer to 3 significant figures and write the units in your answer.

Example 2 Calculate the size of angle $x$.
Give your answer correct to 3 significant figures.


|  | 1 Always start by labelling the sides. |
| :---: | :---: |
| $\tan \theta=\frac{\mathrm{opp}}{\mathrm{adj}}$ | 2 You are given the opposite and the adjacent so use the tangent ratio. |
| $\tan x=\frac{3}{4.5}$ | 3 Substitute the sides and angle into the tangent ratio. |
| $x=\tan ^{-1}\left(\frac{3}{4.5}\right)$ | 4 Use $\tan ^{-1}$ to find the angle. |
| $x=33.6900675 \ldots$ | 5 Use your calculator to work out $\tan ^{-1}(3 \div 4.5)$. |
| $x=33.7^{\circ}$ | 6 Round your answer to 3 significant figures and write the units in your answer. |

Example 3 Calculate the exact size of angle $x$.


| $\sqrt{3} \mathrm{~cm}$ | app <br> $\tan \theta=\frac{\mathrm{opp}}{\mathrm{adj}}$ <br> $\tan x=\frac{\sqrt{3}}{3}$ |
| :--- | :--- |
| $x=30^{\circ}$ | $\mathbf{2}$Always start by labelling the sides. <br> You are given the opposite and the <br> adjacent so use the tangent ratio. |
| $\mathbf{3}$Substitute the sides and angle into <br> the tangent ratio. |  |
| Use the table from the key points to |  |
| find the angle. |  |

## Practice

1 Calculate the length of the unknown side in each triangle.
Give your answers correct to 3 significant figures.
a

b

c

e

f


2 Calculate the size of angle $x$ in each triangle.
Give your answers correct to 1 decimal place.
a

b

c


3 Work out the height of the isosceles triangle.
Give your answer correct to 3 significant figures.

## Hint:

Split the triangle into two right-angled triangles.


4 Calculate the size of angle $\theta$.
Give your answer correct to 1 decimal place.

## Hint:

First work out the length of the common side to both triangles, leaving your answer in surd form.


5 Find the exact value of $x$ in each triangle.
a

c

b

d


## The cosine rule

## A LEVEL LINKS

Scheme of work: 4a. Trigonometric ratios and graphs
Textbook: Pure Year 1, 9.1 The cosine rule

## Key points

- $\quad a$ is the side opposite angle A . $b$ is the side opposite angle B. $c$ is the side opposite angle C .

- You can use the cosine rule to find the length of a side when two sides and the included angle are given.
- To calculate an unknown side use the formula $a^{2}=b^{2}+c^{2}-2 b c \cos A$.
- Alternatively, you can use the cosine rule to find an unknown angle if the lengths of all three sides are given.
- To calculate an unknown angle use the formula $\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$.


## Examples

Example 4 Work out the length of side $w$.
Give your answer correct to 3 significant figures.


|  | 1 Always start by labelling the angles and sides. |
| :---: | :---: |
| $a^{2}=b^{2}+c^{2}-2 b c \cos A$ | 2 Write the cosine rule to find the side. |
| $w^{2}=8^{2}+7^{2}-2 \times 8 \times 7 \times \cos 45^{\circ}$ | 3 Substitute the values $a, b$ and $A$ into the formula. |
| $w^{2}=33.80404051 \ldots$ | 4 Use a calculator to find $w^{2}$ and then $w$. |
| $w=\sqrt{33.80404051}$ | then $w$. <br> 5 Round your final answer to 3 |
|  | significant figures and write the units in your answer. |

Example 5 Work out the size of angle $\theta$. Give your answer correct to 1 decimal place.


## Practice

6 Work out the length of the unknown side in each triangle.
Give your answers correct to 3 significant figures.
a

b

c

d


## 

7 Calculate the angles labelled $\theta$ in each triangle.
Give your answer correct to 1 decimal place.
a

b

c

d


8 a Work out the length of WY. Give your answer correct to 3 significant figures.
b Work out the size of angle WXY.
Give your answer correct to 1 decimal place.


## The sine rule

## A LEVEL LINKS

Scheme of work: 4a. Trigonometric ratios and graphs
Textbook: Pure Year 1, 9.2 The sine rule

## Key points

- $\quad a$ is the side opposite angle A . $b$ is the side opposite angle B. $c$ is the side opposite angle C .

- You can use the sine rule to find the length of a side when its opposite angle and another opposite side and angle are given.
- To calculate an unknown side use the formula $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$.
- Alternatively, you can use the sine rule to find an unknown angle if the opposite side and another opposite side and angle are given.
- To calculate an unknown angle use the formula $\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}$.


## Examples

Example 6 Work out the length of side $x$.
Give your answer correct to 3 significant figures.



Example 7 Work out the size of angle $\theta$. Give your answer correct to 1 decimal place.


1 Always start by labelling the angles and sides.

2 Write the sine rule to find the angle.
3 Substitute the values $a, b, A$ and $B$ into the formula.

4 Rearrange to make $\sin \theta$ the subject.
5 Use $\sin ^{-1}$ to find the angle. Round your answer to 1 decimal place and write the units in your answer.

## Practice

9 Find the length of the unknown side in each triangle.
Give your answers correct to 3 significant figures.
a

b

c

d


## edexcel

10 Calculate the angles labelled $\theta$ in each triangle.
Give your answer correct to 1 decimal place.
a

b

c

d


11 a Work out the length of QS.
Give your answer correct to 3 significant figures.
b Work out the size of angle RQS.
Give your answer correct to 1 decimal place.


## Areas of triangles

## A LEVEL LINKS

Scheme of work: 4a. Trigonometric ratios and graphs
Textbook: Pure Year 1, 9.3 Areas of triangles

## Key points

- $\quad a$ is the side opposite angle A.
$b$ is the side opposite angle B.
$c$ is the side opposite angle C .
- The area of the triangle is $\frac{1}{2} a b \sin C$.



## Examples

Example 8 Find the area of the triangle.


|  | 1 Always start by labelling the sides and angles of the triangle. |
| :---: | :---: |
| $\text { Area }=\frac{1}{2} a b \sin C$ | 2 State the formula for the area of a triangle. |
| $\text { Area }=\frac{1}{2} \times 8 \times 5 \times \sin 82^{\circ}$ | 3 Substitute the values of $a, b$ and $C$ into the formula for the area of a triangle. |
| Area $=19.805361 \ldots$ | 4 Use a calculator to find the area. |
| Area $=19.8 \mathrm{~cm}^{2}$ | 5 Round your answer to 3 significant figures and write the units in your answer. |

## edexcel 크표

## Practice

12 Work out the area of each triangle.
Give your answers correct to 3 significant figures.
a

b

c

13 The area of triangle XYZ is $13.3 \mathrm{~cm}^{2}$. Work out the length of XZ.

## Hint:

Rearrange the formula to make a side the subject.


## Extend

14 Find the size of each lettered angle or side.
Give your answers correct to 3 significant figures.
a

b

c

d


15 The area of triangle ABC is $86.7 \mathrm{~cm}^{2}$.
Work out the length of BC.
Give your answer correct to 3 significant figures.


## Answers

| 1 | $\begin{aligned} & \mathbf{a} \\ & \mathbf{d} \end{aligned}$ | $\begin{aligned} & 6.49 \mathrm{~cm} \\ & 74.3 \mathrm{~mm} \end{aligned}$ | $\mathbf{b}$ | $\begin{aligned} & 6.93 \mathrm{~cm} \\ & 7.39 \mathrm{~cm} \end{aligned}$ | $\begin{aligned} & \mathbf{c} \\ & \mathbf{f} \end{aligned}$ | $\begin{aligned} & 2.80 \mathrm{~cm} \\ & 6.07 \mathrm{~cm} \end{aligned}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | a | $36.9^{\circ}$ | b | $57.1^{\circ}$ | c | $47.0^{\circ}$ | d | $38.7^{\circ}$ |
| 3 |  | 1 cm |  |  |  |  |  |  |
| 4 |  |  |  |  |  |  |  |  |
| 5 | a | $45^{\circ}$ | b | 1 cm | c | $30^{\circ}$ | d | $\sqrt{3} \mathrm{~cm}$ |
| 6 | a | 6.46 cm | b | 9.26 cm | c | 70.8 mm | d | 9.70 cm |
| 7 | a | $22.2{ }^{\circ}$ | b | $52.9{ }^{\circ}$ | c | $122.9^{\circ}$ | d | $93.6{ }^{\circ}$ |
| 8 | a | 13.7 cm | b | $76.0^{\circ}$ |  |  |  |  |
| 9 | a | 4.33 cm | b | 15.0 cm | c | 45.2 mm | d | 6.39 cm |
| 10 | a | $42.8{ }^{\circ}$ | b | $52.8{ }^{\circ}$ | c | $53.6{ }^{\circ}$ | d | $28.2^{\circ}$ |
| 11 | a | 8.13 cm | b | $32.3^{\circ}$ |  |  |  |  |
| 12 | a | $18.1 \mathrm{~cm}^{2}$ | b | $18.7 \mathrm{~cm}^{2}$ | c | $693 \mathrm{~mm}^{2}$ |  |  |

### 135.10 cm

14 a 6.29 cm
b $\quad 84.3^{\circ}$
c $\quad 5.73 \mathrm{~cm}$
d $58.8^{\circ}$
$15 \quad 15.3 \mathrm{~cm}$

